Bank Resolution and the Structure of Global Banks

Patrick Bolton, Columbia Martin Oehmke, Columbia and LSE (visiting)

May 2016

Motivation

Problem: How to resolve systemic financial institutions (G-SIFIs)?

- Aim: Avoid Lehman scenario or tax-funded bailout
- Dodd Frank proposes OLA, partly modeled after FDIC receivership

Main challenge: Swift transfer of assets and liabilities not possible

- ▶ FDIC resolution relies on P&A, usually over weekend
- does not work for G-SIFIs: too complex, too large, global scale

Solution: Resolution happens exclusively on the liability side

- holding companies issue equity and LT debt as loss-absorbing capital
- recapitalization via a liability-side: TLAC written down during crisis

This paper: Economic analysis of two main resolution proposals

Multiple Point of Entry vs. Single Point of Entry

Multiple Point of Entry (MPOE):		Single Point of Entry (SPOE):	
U.S.	U.K.	U.S.	J.K.
Banking assets ST Debt	Banking assets ST Debt		

Preview of Results

(1) Minimum TLAC requirement is necessary under SPOE and MPOE

- otherwise banks may rely on ST debt, making resolution impossible
- (2) Benchmark: SPOE efficient under supra-national regulator
 - SPOE facilitates cross-jurisdictional transfers (co-insurance)
 - reduces required TLAC and allows more banking services
- (3) Status quo: Resolution by national regulators leads to inefficiency:
 - Ex-ante failure to set up SPOE (expected transfers too asymmetric)
 - Ex-post incentives to ring-fence (required transfers too large)

In these cases, **MPOE preferable** (more robust)

constrained optimal: hybrid with some, but not all TLAC shared

Model Setup: Primitives

Three dates: t = 0, 1, 2

A global financial institution has two subsidiaries

- subsidiaries operate in separate jurisdictions i = 1, 2
- e.g., global bank with operations in U.S. and U.K.

Each subsidiary runs its own banking operation

- fixed initial setup cost F at date 0
- banking operation generates cash flow over two periods

Model Setup: Cash Flow at Date 1

Cash flow at date 1 has $\ensuremath{\mathsf{aggregate}}$ and $\ensuremath{\mathsf{diversifiable}}$ risk

Aggregate risk:

- ▶ both subsidiaries receive $C_1 \in \{C_1^H, C_1^L\}$ with probability $\{p_1, 1 p_1\}$
- perfectly correlated

Diversifiable risk:

- \blacktriangleright one subsidiary receives additional cash flow Δ
- Δ realizes in jurisdiction *i* with probability θ_i (and $\theta_1 + \theta_2 = 1$)

Further assumptions:

- C_1^H high enough to meet short-term liabilities irrespective of Δ
- C_1^L may be insufficient, creating a role for resolution

Model Setup: Cash Flow at Date 2

Cash flow at date 2 characterizes continuation or franchise value

• $C_2 \in \{V, 0\}$ with probability $\{p_2^i, 1 - p_2^i\}$

Continuation value is subject to private information:

- ▶ $p_2^i \in \{0,1\}$ private information to subsidiary *i*, market expectation \overline{p}_2
- makes it costly for high type $p_2^i = 1$ to raise funds against V

Early liquidation inefficient:

- within jurisdiction: liquidation payoff $L < \overline{p}_2 V$
- across jurisdictions: spillover cost S

Continuation value subject to economies of scale/scope:

- separation of subsidiaries reduces V to λV , $\lambda \leq 1$
- interpretation: joint cash management, other shared services
- can pay $\widetilde{F} > F$ to set up redundant systems (s.t. $\lambda = 1$)

Model Setup: Financing

F raised through a combination of ST debt, LT debt, and equity

Short-term debt:

- issued by the operating subsidiary ("banking activity")
- ▶ face value *R*₁ due at date 1
- \blacktriangleright safe short-term debt yields social benefit γ in addition to cash flows
- reduced form for social benefits of banking (liquidity transformation)

Long-term debt and equity (TLAC):

- issued by the holding company
- ▶ long-term subordinated debt R_{LT} due at date 2
- outside equity stake α_0

Issuance by holding company guarantees structural subordination

Model Setup: Regulators

There is a national regulator in each jurisdiction

reflects regulatory status quo

National regulator can invoke resolution when:

- local operating subsidiary unable to pay R_1
- regulator in other jurisdiction has invoked resolution

Main friction: Regulators have national interests

- regulators care only about their own jurisdiction
- compare to benchmark of supra-national regulation

The Need for Required TLAC

MPOE/SPOE requires sufficient loss-absorbing capital (TLAC)

- need sufficient equity or LT debt that can absorb losses
- idea: completely protect runnable operating liabilities R₁

Will banks issue sufficient TLAC? Trade-off:

- no TLAC (relying completely on R₁): exposes bank to inefficient liquidation and banking benefit γ lost
- but TLAC is costly: claims against V issued at a discount

Solve for optimal financing in pooling equilibrium

- no separation possible: low type can costlessly mimic high type
- equilibrium financing depends on high type's choices (as in Bolton and Freixas, 2000)

The Need for Required TLAC

TLAC becomes relevant when $F > (1 + \gamma)(C_1^L + \overline{p}_2 V)$

- can issue risk-free ST debt of face value $C_1^L + \overline{p}_2 V$
- Why? Can always repay C_1^L and roll over $\overline{p}_2 V$ at t = 1

Compare two funding structures:

(1) Sufficient TLAC:

- issue $R_1 = C_1^L + \overline{p}_2 V$ of safe ST debt
- ► raise $F (1 + \gamma)(C_1^L + \overline{p}_2 V)$ via combination of R_{LT} and α_0

(2) No TLAC:

• raise *F* exclusively via risky short-term debt $R_1 > C_1^L + \overline{p}_2 V$

The Need for Required TLAC

Owner of operating subsidiary relies exclusively on risky ST debt when:

$$\overline{p}_2 < \overline{p}_2^*(\gamma, L)$$

Intuition:

- ▶ low \overline{p}_2 implies high dilution costs for high type
- high type prefers to rely on ST debt and risk bankruptcy

Inefficient from social perspective:

- inefficient liquidation with probability $1 p_1$
- \blacktriangleright social benefit of risk-free ST debt γ lost

Minimum TLAC requirement necessary to complement SPOE/MPOE

 \blacktriangleright when TLAC falls short \Rightarrow disorderly liquidation or bailout

Supra-National Regulation and Regulatory Status Quo

Move to comparison of MPOE and SPOE resolution

Plan of attack:

First consider benchmark case: Supra-national regulator

- regulator maximizes joint surplus
- can commit to future transfers

Then consider status quo: Self-interested national regulators

- regulators maximize surplus in own jurisdiction
- cannot commit to future transfers

SPOE and MPOE under Supra-National Regulation

MPOE:

- Maximum amount of safe ST debt: $R_1^{MPOE} = C_1^L + \overline{p}_2 V$
- ► $F (1 + \gamma)R_1^{MPOE}$ raised via LT subordinated debt or equity (TLAC)
- ▶ separation/redundancy costs of min[$\tilde{F} F$, $(1 p_1)(1 \lambda)\overline{p}_2V$]

SPOE:

- Maximum amount of safe ST debt: $R_1^{SPOE} = C_1^L + \overline{p}_2 V + \Delta/2$
- $F (1 + \gamma)R_1^{SPOE}$ raised via LT subordinated debt or equity (TLAC)
- no separation/redundancy costs

Net social benefit of SPOE: $\gamma \Delta + 2 \min[\tilde{F} - F, (1 - p_1)(1 - \lambda)\overline{p}_2 V]$

- allows for more banking services at same risk level
- facilitates economies of scale/scope

Nationally Interested Regulators: Ex Ante Analysis

Will national regulators agree to set up SPOE ex ante?

Ex ante benefit of SPOE:

- additional banking services: $\gamma \Delta/2$
- economics of scale/scope: $\min[\tilde{F} F, (1 p_1)(1 \lambda)\overline{p}_2 V]$

Ex ante cost of SPOE: (from perspective of jurisdiction 1)

- with probability $(1 p_1)\theta_1$, make transfer of $\Delta/2$
- with probability $(1 p_1)\theta_2$, receive transfer of $\Delta/2$
- \Rightarrow net expected transfer of $(1 p_1)(\theta_1 \theta_2)\Delta/2$

Ex-ante IC for SPOE (taking into account both regulators):

$$| heta_1 - heta_2| \leq rac{\gamma}{1 - p_1} + rac{2}{\Delta} \min\left[rac{\widetilde{F} - F}{1 - p_1}, (1 - \lambda)\overline{p}_2 V
ight]$$

 \Rightarrow fail to set up SPOE when expected transfers too asymmetric

Nationally Interested Regulators: Ex Post Analysis

Will national regulators stick to planned SPOE ex post?

Ex-post IC for SPOE: required transfer smaller than cost of ring-fencing

$$rac{\Delta}{2} \leq \overline{p}_2(1-\lambda)V + S$$

SPOE breaks down ex post when realized transfers are too large

Gains from global banking and spillover costs facilitate SPOE

- ▶ shared services (λ < 1), e.g., joint cash mgmt, scope economies
- direct spillovers across jurisdictions S

When IC violated, preferable to set up MPOE

 requires more TLAC, but is more robust because no transfers required

Bank Resolution and Bank Structure

Constrained-Optimal Resolution when SPOE Fails

When SPOE is not ex-post incentive compatible:

maximize cross-jurisdiction transfer subject to ex-post IC

$$T^* = \overline{p}_2(1-\lambda)V + S < \Delta/2$$

this allows banking activity (at each operating subsidiary) of

$$C_1^L + \overline{p}_2 V + T^* < C_1^L + \overline{p}_2 V + \Delta/2$$

Essentially a hybrid model:

- limit transfers via "contributable resources" (i.e., Δ)
- corresponding increase in "prepositioned resources" (i.e., TLAC)

Conclusion

Model of resolution of global banks via "liability reconstruction"

focus on MPOE vs. SPOE

SPOE efficient in principle, but national regulators limit applicability

- ex ante: asymmetry of expected transfers matters
- ex post: size of realized transfers matters

Constrained optimal resolution often a hybrid

Novel link between resolution, organizational structure, and nature of business risks

- SPOE requires cross-jurisdictional complementarities
- corporate structure and resolution mechanism have to match

Discussion of Proposed Resolution Rules

What constitutes a "resolution entity" is flexible

cooperation via appropriate resolution boundary

Internal TLAC within a given resolution entity

- pre-allocates TLAC to intermediate holding companies
- similar to constrained optimal resolution, but may not be enough
- perhaps need external TLAC also at intermediate holding co level

Fed proposal seems to go beyond ensuring IC

- internal TLAC almost as high as external TLAC
- eliminates diversification benefit of SPOE

Why is there a LT debt requirement?

Bank Incentives under SPOE and MPOE

Moral hazard: Each subsidiary has to exert effort to generate Δ

- effort: Δ received with probability θ_i
- **•** no effort: Δ received with probability $\theta_i \varepsilon$, but private benefit B

For simplicity, assume that TLAC is an outside equity stake α_0

How does IC differ between MPOE and SPOE?

- under SPOE, Δ no longer accrues to inside equity holder in low state
- but SPOE can allow to retain a larger inside equity stake

IC under MPOE:
$$(1 - \alpha_0^{MPOE}) \Delta > \frac{B}{\varepsilon}$$

IC under SPOE: $(1 - \alpha_0^{SPOE}) p_1 \Delta > \frac{B}{\varepsilon}$

Bank Incentives under SPOE and MPOE

Symmetric case ($\theta_1 = \theta_2 = 1/2$):

SPOE resolution leads to reduced incentives relative to MPOE when

$$\frac{\Delta}{2} < (1 - p_1)(C_1^H - C_1^L)$$

Asymmetric case ($\theta_1 \neq \theta_2 = 1/2$):

 easier to sustain incentives under SPOE relative to MPOE the larger the asymmetry of probabilities |θ₁ - θ₂|

Break-Even Conditions with Sufficient TLAC

1. Set safe
$$R_1 = C_1^L + \overline{p}_2 V$$
.

2. R_{LT} must satisfy:

$$p_1\left[\overline{p}_2 R_{LT} + (1 - \overline{p}_2)(C_1^H + \theta \Delta - R_1)\right] + (1 - p_1)\theta \Delta = F - \underbrace{(1 + \gamma)R_1}_{\text{raised via safe } R_1}$$

3. Profit to bank:

$$\Pi_{TLAC} = p_1 \left[C_1^H + \theta \Delta + V - R_1 - R_{LT} \right]$$

= $\frac{1}{\overline{p}_2} \left[p_1 C_1^H + (1 - p_1) C_1^L + \theta \Delta + \overline{p}_2 V + \gamma (C_1^L + \overline{p}_2 V) - F \right]$

Break-Even Conditions without TLAC

1. Finance entire investment with short-term debt R_1 :

$$p_1R_1 + (1-p_1)(C_1^L + \theta \Delta + L) = F$$

2. Profit to bank:

$$\Pi_{noTLAC} = p_1 \left[C_1^H + \theta \Delta - R_1 + V \right]$$

= $p_1 C_1^H + (1 - p_1) C_1^L + \theta \Delta + p_1 V - (1 - p_1) L - F$

Then determine whether $\Pi_{TLAC} > \Pi_{noTLAC}$